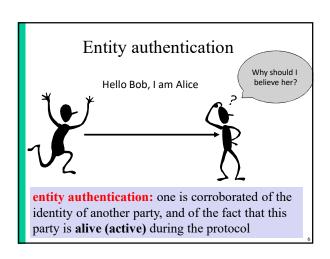
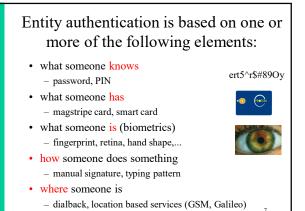
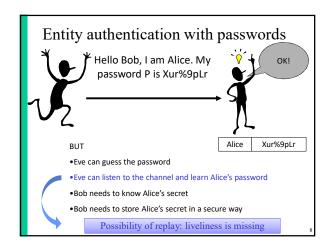
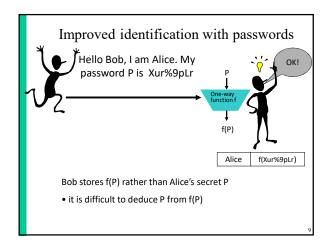
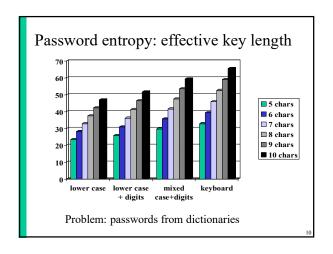

Goals

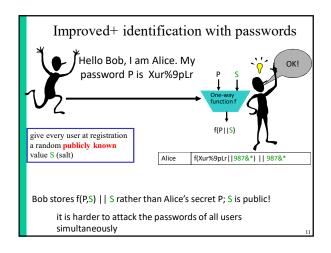

- · Understand goals of entity authentication
- Understand strength and limitations of entity authentication protocols including passwords
- Understand subtle problems when entity authentication protocols are deployed in practice
- Understand variants of key establishment protocols and subtle attacks

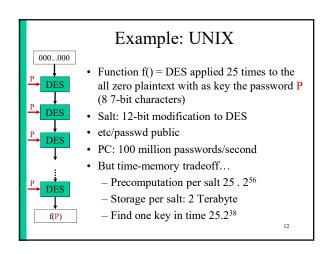



Identification


- the problem
- · passwords
- challenge response with symmetric key and MAC (symmetric tokens)
- challenge response with public key (signatures, ZK)
- biometry







Improving password security

- Apply the function f "x" times to the password (iteratively)
 - if x = 100 million, testing a password guess takes a few seconds
 - need to increase x with time (Moore's law)
 - need to define function f such that special hardware crackers do not gain a large advantage over general purpose computers (memory intensive)
 - e.g. PBKDF2 (Password-Based Key Derivation Function 2), scrypt, bcrypt, Argon2,...
- · Disadvantage:
 - one cannot use the same hashed password file on a faster server and on an embedded device with an 8-bit microprocessor
 - need to use different values of x depending on the computational power of the machine
 - deemed too expensive for large Internet companies

13

Improving password security (2)

- Internet companies are using a function f "x" times with a small value of x combined with a MAC algorithm (e.g. HMAC).
 - idea: MAC computation with secret key in dedicated server
- Example Facebook (piling up of legacy systems)
 SHA-2(bcrypt(HMAC_K(MD5(salt || password)))

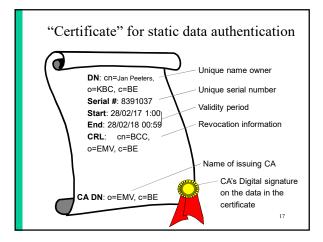
14

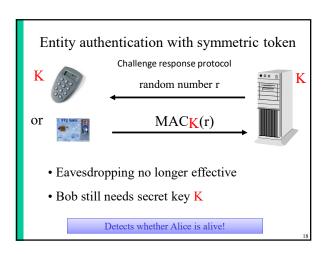
Problem: human memory is limited

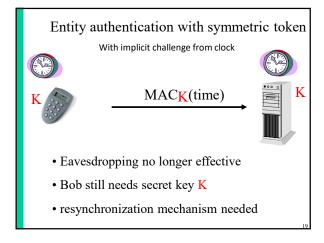
 Solution: store key K on magstripe, USB key, hard disk

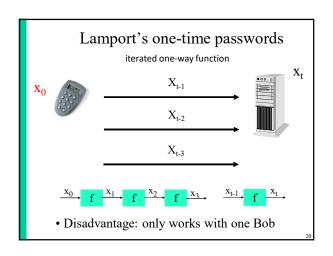
· Stops guessing attacks

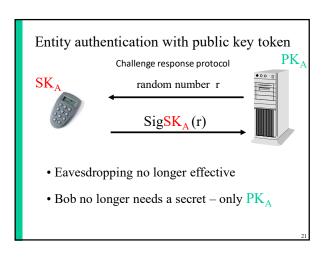
But this does not solve the other problems related to passwords And now you identify the card, not the user....

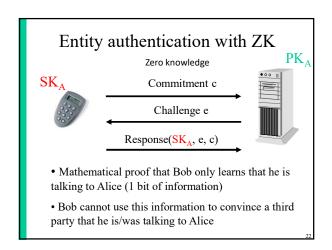

Possibility of replay: liveliness is missing

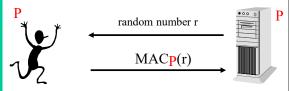

Improvement: Static Data Authentication


- Replace K by a signature of a third party CA (Certification Authority) on Alice's name: SigSK_{CA} (Alice) = special certificate
- Advantage: can be verified using a public string PK_{CA}
- Advantage: can only be generated by CA
- Disadvantage: signature = 40..128 bytes
- Disadvantage: can still be copied/intercepted


Possibility of replay: liveliness is missing





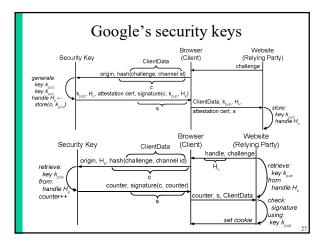

ZK definitions

- **complete:** if Alice knows the secret, she can carry outthe protocol successfully
- sound: Eve (who wants to impersonate Alice) can only convinceBob with a very small probability that she is Alice;
- zero knowledge: even a dishonest Bob does not learn anything except for 1 bit (he is talking to Alice); he could have produced himself all the other information he obtains during the protocol.

Overview Identification Protocols Guess Eavesdrop Impersonation Secret Mathema-Security									
	Guess	Eavesdrop channel (liveliness)	Impersonation by Bob	Secret info for Bob	Mathema- tical proof	Security			
Password	-	-	-	-	-	1			
Magstripe (SK)	+	-	-	-	-	2			
Magstripe (PK)	+	-	-	+	-	3			
Dynamic password	+	+	-	-	-	4			
Smart card (SK)	+	+	-	-	-	4			
Smart Card (PK)	+	+	+	+	-	5			
ZK	+	+	+	+	+	6			

Entity authentication with password

Challenge response protocol



- Eavesdropping no longer effective
- Bob still needs secret key P
- Exhaustive search for P is easy based on a single transcript

Google's security keys

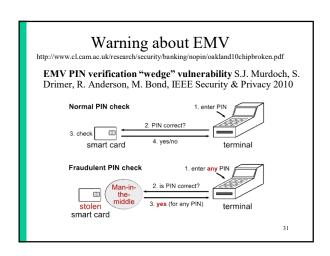
- Standardized by FIDO Alliance
- Threat model
 - web attackers (host malicious web content)
 - related site attackers
 - network level attackers
 - malware (but not in browser)
- Hardware: public key + button to press
- Generate key pair for each website and authenticate using device key pair

26

Entity authentication in practice

- Phishing mutual authentication
- Losing devices local authentication to device need to check proper linking of tw protocols (e.g. EMV)
- Sharing devices biometry
- Interrupt after initial authentication authenticated key establishment
- Mafia fraud distance bounding

28

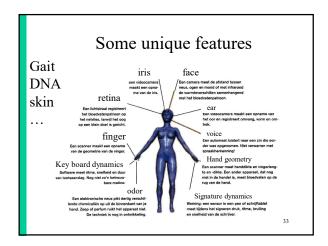

Mutual entity authentication

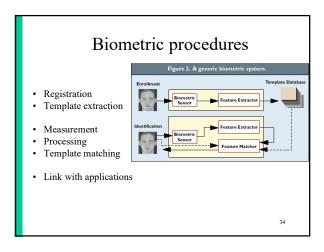
- Phishing is impersonating of the verifier (e.g. the bank)
- Most applications need entity authentication in two directions
- User needs to make judgment: difficult!
- Mutual entity authentication is not equivalent to 2 parallel unilateral protocols for entity authentication

29

Limitations of devices

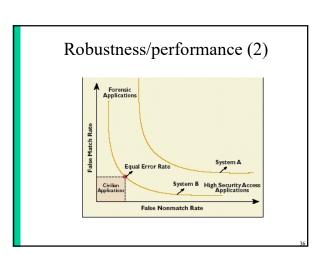
- · Device authenticates user
 - but if the user looses the device...
 - solution: authenticate user to device using password, PIN or biometrics
 - but need to connect both phases properly! (EMV example)
- Device can be passed on to others (delegation, fraud)
 - solution: biometrics




Biometry

- Based on our unique features
- · Identification or verification
 - Is this Alice?
 - Check against watchlist
 - Has this person ever registered in the system?

32



Robustness/performance

Performance evaluation

False Acceptance Ratio or False Match Rate
False Rejection Ratio or False Non-Match Rate

Application dependent

Fingerprint

- Used for PC/laptop access
- Widely available
- Reliable and inexpensive

• Simple interface

37

Fingerprint (2)

- · Small sensor
- Small template (100 bytes)
- Commercially available
 - Optical/thermical/capacitive
 - Liveness detection
- Problems for some ethnic groups and some professions
- Connotation with crime

38

Fingerprint (3): gummy fingers Making an Artificial Finger directly from a Live Finger How to make a gummy finger Put the plastic into hot water to soften it. Press a live finger against it. Pour the liquid into the mold. Put it into A refrigerator to cool. It takes around 10 minutes. The gummy finger

Hand geometry

- Flexible performance tuning
- Mostly 3D geometry
- Example: 1996 Olympics

Voice recognition

- Speech processing technology well developed
- Can be used at a distance
- Can use microphone of our gsm
- But tools to spoof exist as well
- Typical applications: complement PIN for mobile or domotica

41

Iris Scan

- · No contact and fast
- · Conventional CCD camera
- 200 parameters
- Template: 512 bytes
- · All etnic groups
- · Reveals health status

Retina scan

- Stable and unique pattern of blood vessels
- Invasive
- · High security

43

Manual signature

- Measure distance, speed, accelerations, pressure
- Familiar
- · Easy to use
- Template needs continuous update
- Technology not fully mature

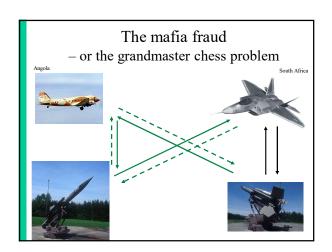
Facial recognition

- · User friendly
- · No cooperation needed
- · Reliability limited
- · Robustness improved substantially in last years
 - Lighting conditions
 - Glasses/hair/beard/...

Comparison									
Feature	Uniqueness	Permanent	Performance	Acceptability	Spoofin				
Facial	Average	Average	Average	High	Low				
Fingerprint	High	High	High??	Average	High??				
Hand geometry	Average	Average	Average	Average	Average				
Iris	High	High	High	Low	High				
Retina	High	Average	High	Low	High				
Signature	Low	Low	Low	High	Low				
Voice	Low	Low	Low	High	Low				

Biometry: pros and cons

- · Real person
- · User friendly
- · Cannot be forwarded
- · Little effort for user
- Privacy (medical)
- · Liveliness?
- · Cannot be replaced
- Risk for physical attacks
- Hygiene
- Does not work everyone, e.g., people with disabilities
- Evolving towards behavioral biometrics
- Secure implementation: derive key in a secure way from the biometric
- Intrusive?


- Reliability
- · No cryptographic key

Keeping authenticity alive · Establish who someone is · Establish that this person is active/liveliness • But what if the connection is broken after the initial phase? random number r secure setup $SigSK_A(r)$ attacker Rest of takes communication

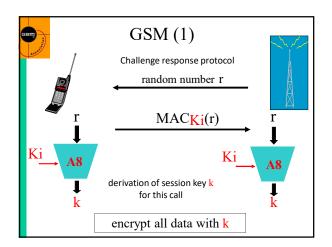
Solution

- Authenticated key agreement
- Run a mutual entity authentication protocol
- Establish a key
- Encrypt and authenticate all information exchanged using this key

49

Location-based authentication

- Distance bounding: try to prove that you are physically close to the verifier
- Other uses of "location"
 - Dial-back: can be defeated using fake dial tone
 - $-\ \mbox{IP}$ addresses and MAC addresses can be spoofed
 - Mobile/wireless communications: operator knows access point, but how to convince others?
 - Trusted GPS: Galileo?


51

Key establishment

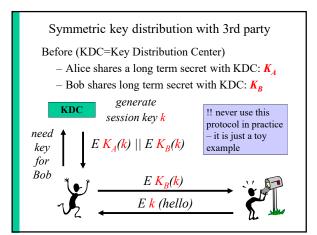
- The problem
- How to establish secret keys using secret keys?
- How to establish secret keys using public keys?
 - Diffie-Hellman and STS
- How to distribute public keys? (PKI)

Key establishment: the problem

- Cryptology makes it easier to secure information, by replacing the security of information by the security of keys
- The main problem is how to establish these keys
 - 95% of the difficulty
 - integrate with application
 - if possible transparent to end users

GSM (2)

- SIM card with long term secret key Ki (128 bits)
- · secret algorithms
 - A3: MAC algorithm
 - A8: key derivation algorithm
 - A5.1/A5.2: encryption algorithm
- anonimity: IMSI (International Mobile Subscriber Identity) replaced by TIMSI (temporary IMSI)
 - the next TIMSI is sent (encrypted) during the call set-up

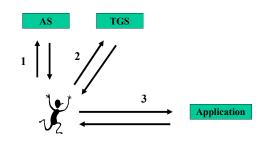

Point-to point symmetric key distribution

Before: Alice and Bob share long term secret K_{AB}

generate session key k

 $EK_{AB}(k \mid | time \mid | Bob) \qquad decrypt$ $Ek (time \mid | Alice \mid | hello) \qquad extract k$

- After: Alice and Bob share a short term key k
 - which they can use to protect a specific interaction
 - which can be thrown away at the end of the session
- · Alice and Bob have also authenticated each other



Symmetric key distribution with 3rd party(2)

- After: Alice and Bob share a short term key k
- Need to trust third party!
- · Single point of failure in system

Kerberos/Single Sign On (SSO)

· Alice uses her password only once per day

Kerberos/Single Sign On (2)

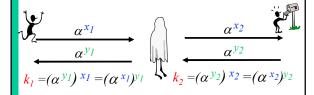
- Step 1: Alice gets a "day key" K_A from AS (Authentication Server)
 - based on a Alice's password (long term secret)
 - $-K_A$ is stored on Alice's machine and deleted in the evening
- Step 2: Alice uses K_A to get application keys
 k_i from TGS (Ticket Granting Server)
- Step 3: Alice can talk securely to applications (printer, file server) using application keys k_i

A public-key distribution protocol: Diffie-Hellman

 Before: Alice and Bob have never met and share no secrets; they know a public system parameter α

generate x α^x generate y compute α^y compute α^y compute $k=(\alpha^y)^x$ compute $k=(\alpha^x)^y$

- After: Alice and Bob share a short term key *k*
 - Eve cannot compute k: in several mathematical structures it is hard to derive x from α^x (this is known as the discrete logarithm problem)


Diffie-Hellman (continued)

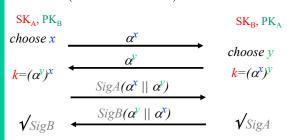
generate x α^x generate y compute α^y compute $k = (\alpha^y)^x$ compute $k = (\alpha^x)^y$

- BUT: How does Alice know that she shares this secret key **k** with Bob?
- Answer: Alice has no idea at all about who the other person is! The same holds for Bob.

Person-in-the middle attack

- Eve shares a key k₁ with Alice and a key k₂ with Bob
- · Requires active attack

Entity authentication with password: EKE P All operations mod p A $\parallel E_p(\alpha^x)$ $A \parallel E_p(\alpha^x)$ $A \parallel E_p(\alpha^y \parallel r_B)$ $A \parallel E_p(\alpha^y \parallel r_B)$


Adds entity authentication to Diffie Hellman

(all inputs are concatenated)

- Attacker cannot perform off-line exhaustive search for the password P
- Attacker can still try on-line attacks; need to restrict number of uses of the account
- Literature: PAKE: Password Authenticated Key Establishment

Station to Station protocol (STS)

- The problem can be fixed by adding digital signatures
- This protocol plays a very important role on the Internet (under different names)

Key transport using RSA

generate $\frac{k}{E_{PKB}(k)}$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$

- How does Bob know that **k** is a fresh key?
- How does Bob know that this key k is coming from Alice?
- How does Alice know that Bob has received the key
 k and that Bob is present (entity authentication)?

Key transport using RSA (2)

generate k $E_{PKB}(k)$ $E_{PKB}(k \parallel t_A)$ $using SK_B to obtain <math>k$

• Freshness is solved with a timestamp t_A

Key transport using RSA (3)

generate k

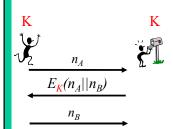
 $\underbrace{Sig_{SK_A}(E_{PK_B}(\mathbf{k} \parallel \mathbf{t_A}))}_{SK_B and} \xrightarrow{gK_B and} \underbrace{SK_B and}_{verify using}$

- · Alice authenticates by signing the message
- There are still attacks (signature stripping...)

Key transport using RSA (4): X.509

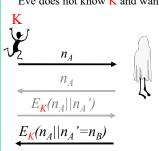
generate k

$$Sig_{SK_A}(B|| t_A || E_{PK_B}(A || k))$$


$$|| t_A || E_{PK_B}(A || k)$$

$$SK_B and verify using PK_A$$

Mutual: B can return a similar message including part of the first message Problem (compared to D-H/STS): lack of **forward secrecy**


If the long term key SK_B of Bob leaks, all past session keys can be recovered!

A simple protocol

Reflection attack

Eve does not know K and wants to impersonate Bob

Conclusions

- Properties of protocols are subtle
- Many standardized protocols exist

 ISO/IEC, IETF
- Difficulty: which properties are needed for a specific application
- Rule #1 of protocol design: **Don't** not even by simplifying existing protocols

Recommended reading

- NIST Special Publication 800-63 Version 1.0.2 (2006): Electronic Authentication Guideline: identifies four levels of assurance http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
- D. Balfanz, R. Chow, O. Eisen, M. Jakobsson, S. Kirsch, S. Matsumoto, J. Molina, P.C. van Oorschot: The Future of Authentication. IEEE Security & Privacy 10(1): 22-27 (2012)
- J. Bonneau, C. Herley, P.C. van Oorschot, F. Stajano: The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes. IEEE Symposium on Security and Privacy 2012: 553-567

See http://csrc.nist.gov/publications/PubsSPs.html for about 120 Special Publications (800 Series) from NIST on computer security and cryptography 74